12,948 research outputs found

    Displacement Data Assimilation

    Full text link
    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information important. While the displacement transformation is not tied to any particular assimilation scheme, here we implement it within an ensemble Kalman Filter and demonstrate its effectiveness in tracking stochastically perturbed vortices.Comment: 26 Pages, 9 figures, 5 table

    Population bound effects on bosonic correlations in non-inertial frames

    Get PDF
    We analyse the effect of bounding the occupation number of bosonic field modes on the correlations among all the different spatial-temporal regions in a setting in which we have a space-time with a horizon along with an inertial observer. We show that the entanglement between A (inertial observer) and R (uniformly accelerated observer) depends on the bound N, contrary to the fermionic case. Whether or not decoherence increases with N depends on the value of the acceleration a. Concerning the bipartition A-antiR (Alice with an observer in Rindler's region IV), we show that no entanglement is created whatever the value of N and a. Furthermore, AR entanglement is very quickly lost for finite N and for infinite N. We will study in detail the mutual information conservation law found for bosons and fermions. By means of the boundary effects associated to N finiteness, we will show that for bosons this law stems from classical correlations while for fermions it has a quantum origin. Finally, we will present the strong N dependence of the entanglement in R-antiR bipartition and compare the fermionic cases with their finite N bosonic analogs. We will also show the anti-intuitive dependence of this entanglement on statistics since more entanglement is created for bosons than for their fermion counterparts.Comment: revtex 4, 12 pages, 10 figures. Added Journal ref

    Experimental Demonstration of >230{\deg} Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces

    Get PDF
    Metasurfaces offer significant potential to control far-field light propagation through the engineering of amplitude, polarization, and phase at an interface. We report here phase modulation of an electronically reconfigurable metasurface and demonstrate its utility for mid-infrared beam steering. Using a gate-tunable graphene-gold resonator geometry, we demonstrate highly tunable reflected phase at multiple wavelengths and show up to 237{\deg} phase modulation range at an operating wavelength of 8.50 {\mu}m. We observe a smooth monotonic modulation of phase with applied voltage from 0{\deg} to 206{\deg} at a wavelength of 8.70 {\mu}m. Based on these experimental data, we demonstrate with antenna array calculations an average beam steering efficiency of 50% for reflected light for angles up to 30{\deg}, relative to an ideal metasurface, confirming the suitability of this geometry for reconfigurable mid-infrared beam steering devices

    Thermodynamics of Quantum Jump Trajectories

    Full text link
    We apply the large-deviation method to study trajectories in dissipative quantum systems. We show that in the long time limit the statistics of quantum jumps can be understood from thermodynamic arguments by exploiting the analogy between large-deviation and free-energy functions. This approach is particularly useful for uncovering properties of rare dissipative trajectories. We also prove, via an explicit quantum mapping, that rare trajectories of one system can be realized as typical trajectories of an alternative system.Comment: 5 pages, 3 figure

    Facilitated spin models of dissipative quantum glasses

    Full text link
    We introduce a class of dissipative quantum spin models with local interactions and without quenched disorder that show glassy behaviour. These models are the quantum analogs of the classical facilitated spin models. Just like their classical counterparts, quantum facilitated models display complex glassy dynamics despite the fact that their stationary state is essentially trivial. In these systems, dynamical arrest is a consequence of kinetic constraints and not of static ordering. These models display a quantum version of dynamic heterogeneity: the dynamics towards relaxation is spatially correlated despite the absence of static correlations. Associated dynamical fluctuation phenomena such as decoupling of timescales is also observed. Moreover, we find that close to the classical limit quantum fluctuations can enhance glassiness, as recently reported for quantum liquids.Comment: 7 pages, 6 figure

    Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging

    Get PDF
    In this work we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances or loads. The distributed architecture allows for flexibility and redundancy, and eliminates the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.Comment: Accepted for publication in IEEE Transactions on Industrial Electronic

    Unveiling quantum entanglement degradation near a Schwarzschild black hole

    Get PDF
    We analyze the entanglement degradation provoked by the Hawking effect in a bipartite system Alice-Rob when Rob is in the proximities of a Schwarzschild black hole while Alice is free falling into it. We will obtain the limit in which the tools imported from the Unruh entanglement degradation phenomenon can be used properly, keeping control on the approximation. As a result, we will be able to determine the degree of entanglement as a function of the distance of Rob to the event horizon, the mass of the black hole, and the frequency of Rob's entangled modes. By means of this analysis we will show that all the interesting phenomena occur in the vicinity of the event horizon and that the presence of event horizons do not effectively degrade the entanglement when Rob is far off the black hole. The universality of the phenomenon is presented: There are not fundamental differences for different masses when working in the natural unit system adapted to each black hole. We also discuss some aspects of the localization of Alice and Rob states. All this study is done without using the single mode approximation.Comment: 16 pages, 10 figures, revtex4. Added Journal referenc

    First Observations on the Re-Established Southeast Florida Recreational Swordfish Tournament Fishery

    Get PDF
    Recreational tournaments for swordfish (Xiphias gladius) existed in the Florida Straits between 1977 and 1983 before disappearing due to low catch rates and an overexploitation of the stock. The first recent swordfish tournament occurred in 2001 off southeast Florida with 13 participating vessels. In 2002, three swordfish tournaments were observed and anglers were interviewed to determine catch and gear characteristics of the re-established recreational fishery. A total of 156 vessels participated in these three tournaments, catching 112 swordfish and hooking an additional 48 animals. The combination of the recovery of the North Atlantic swordfish stock and the continuation of the 2001 closure of the Florida Straits to commercial pelagic longline fishing gear is expected to result in the continued expansion of the southeast Florida recreational swordfish fishery

    Interplay Between Yu-Shiba-Rusinov States and Multiple Andreev Reflections

    Full text link
    Motivated by recent scanning tunneling microscopy experiments on single magnetic impurities on superconducting surfaces, we present here a comprehensive theoretical study of the interplay between Yu-Shiba-Rusinov bound states and (multiple) Andreev reflections. Our theory is based on a combination of an Anderson model with broken spin degeneracy and nonequilibrium Green's function techniques that allows us to describe the electronic transport through a magnetic impurity coupled to superconducting leads for arbitrary junction transparency. Using this combination we are able to elucidate the different tunneling processes that give a significant contribution to the subgap transport. In particular, we predict the occurrence of a large variety of Andreev reflections mediated by Yu-Shiba-Rusinov bound states that clearly differ from the standard Andreev processes in non-magnetic systems. Moreover, we provide concrete guidelines on how to experimentally identify the subgap features originating from these tunneling events. Overall, our work provides new insight into the role of the spin degree of freedom in Andreev transport physics.Comment: 15 pages, 10 figure
    • …
    corecore